From 1 - 10 / 260
  • During austral summer1994/95, the National Institute of Oceanography and Applied Geophysics - OGS, on board the research vessel OGS-Explora, conducted marine geological and geophysical surveys along the Antarctic Peninsula. The ANGELINA (ANtarctic GEophysical Long range INternational Acquisition) programme was a seismic exploration cruise in the Adelaide Fracture Zone on the Pacific Margin, near Marguerite Bay and Adelaide Island; data were collected between longitude 68 and 74 degrees West, and latitude 66 and 69 degrees South. During this programme 610 km of 20-fold multichannel seismic reflection (MCS) data, 20 second records, 4 ms sample rate, were recorded on a SERCEL SN 358 DMX system. The source consisted of an airgun array with a total volume of 75 litres fired every 75 meters into a 3000 m cable consisting of 120 hydrophone groups towed at an average depth of 10 m. A GPS + TRANSIT satellite receiver system was used for navigation. The Chief Scientist on this programme was: Michele Pipan of the Dipartimento di Scienze Geologiche Ambientali e Marine of the Università di Trieste, via Weiss n.2, 34127 Trieste, Italy. Processing of the data generally followed a conventional sequence: Reformat, Quality control, Amplitude recovery, Deconvolution, Velocity analysis, NMO corrections, Mute, Stack, Mixing, Filter, and Dynamic trace equalisation.

  • During austral summer1994/95, the National Institute of Oceanography and Applied Geophysics - OGS, on board the research vessel OGS-Explora, conducted marine geological and geophysical surveys along the Antarctic Peninsula. The ANGELINA (ANtarctic GEophysical Long range INternational Acquisition) programme was a seismic exploration cruise in the Adelaide Fracture Zone on the Pacific Margin, near Marguerite Bay and Adelaide Island; data were collected between longitude 68 and 74 degrees West, and latitude 66 and 69 degrees South. During this programme 610 km of 20-fold multichannel seismic reflection (MCS) data, 20 second records, 4 ms sample rate, were recorded on a SERCEL SN 358 DMX system. The source consisted of an airgun array with a total volume of 75 litres fired every 75 meters into a 3000 m cable consisting of 120 hydrophone groups towed at an average depth of 10 m. A GPS + TRANSIT satellite receiver system was used for navigation. The Chief Scientist on this programme was: Michele Pipan of the Dipartimento di Scienze Geologiche Ambientali e Marine of the Università di Trieste, via Weiss n.2, 34127 Trieste, Italy. Processing of the data generally followed a conventional sequence: Reformat, Quality control, Amplitude recovery, Deconvolution, Velocity analysis, NMO corrections, Mute, Stack, Mixing, Filter, and Dynamic trace equalisation.

  • During austral summer1994/95, the National Institute of Oceanography and Applied Geophysics - OGS, on board the research vessel OGS-Explora, conducted marine geological and geophysical surveys along the Antarctic Peninsula. The ANGELINA (ANtarctic GEophysical Long range INternational Acquisition) programme was a seismic exploration cruise in the Adelaide Fracture Zone on the Pacific Margin, near Marguerite Bay and Adelaide Island; data were collected between longitude 68 and 74 degrees West, and latitude 66 and 69 degrees South. During this programme 610 km of 20-fold multichannel seismic reflection (MCS) data, 20 second records, 4 ms sample rate, were recorded on a SERCEL SN 358 DMX system. The source consisted of an airgun array with a total volume of 75 litres fired every 75 meters into a 3000 m cable consisting of 120 hydrophone groups towed at an average depth of 10 m. A GPS + TRANSIT satellite receiver system was used for navigation. The Chief Scientist on this programme was: Michele Pipan of the Dipartimento di Scienze Geologiche Ambientali e Marine of the Università di Trieste, via Weiss n.2, 34127 Trieste, Italy. Processing of the data generally followed a conventional sequence: Reformat, Quality control, Amplitude recovery, Deconvolution, Velocity analysis, NMO corrections, Mute, Stack, Mixing, Filter, and Dynamic trace equalisation.

  • High-resolution multichannel seismic profiles have been collected in January–March 2017 by OGS on the continental rise off the Sabrina Coast (East Antarctica). The data were acquired as part of the Italian Program of Antarctic Research (PNRA) TYTAN “Totten Glacier dynamics and Southern Ocean circulation impact on depositional processes since the Mid- to Late Cenozoic” project (PI: F. Donda-OGS) during the Australian Marine National Facility survey IN2017-V01 on board the RV Investigator. TYTAN was embedded in to the Australian project "Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles” that aimed to understand the interaction of Totten Glacier and its ice drainage basin with the Southern Ocean during periods of warming and ice-sheet retreat in the Pleistocene and Holocene. In order to achieve these scientific objectives, three areas were identified for the geophysical and oceanographic survey: two on the continental slope and rise off Sabrina Coast and one on the continental shelf, which was not investigated because it remained covered by sea ice throughout the season. Expanded and well-preserved sedimentary successions imaged on the TYTAN seismic data highlight the potential of this region for deep ocean drilling, which will provide unprecedented history of the glaciers evolution in the Aurora Basin and their sensitivity to climate change under different background state conditions. In fact, TYTAN seismic data played a crucial role in the identification of potential drilling sites for the IODP 1002 Proposal “Totten Glacier Climate Vulnerability under varying Neogene climate conditions: Lessons for East Antarctic Ice Sheet climate sensitivity” (under review).

  • This project was performed to investigate the evolution of Western ice sheet (WIS) in the Eastern Basin (Ross Sea), Antarctica. The Ross Sea is part of the West Antarctic Rift System that has three main depocenters as the Eastern Basin, the Central Basin and the Victoria Land Basin. The Eastern Basin contains a thick sedimentary sequence that tells about the WIS advance and retreat. DSDP cores were drilled in this area (Hayes and Frakes, 1975) gives knowledge about the stratigraphy and the depositional environment of the area from Upper Miocene to Pleistocene (Hayes and Frakes, 1975). Large erosional hiatuses and poor interpretations of DSDP cores, do not let to construct of the Eastern Basin depositional history and the evolution of the WIS (Hayes and Frakes, 1975; Denton et al., 1991). On the other hand, multichannel seismic studies in the Ross Sea gives more knowledge about the sedimentary sequences and unconformities (ANTOSTRAT, 1995). These studies show that Lower Pliocene is identified by a marked erosion surface, called RSU2 (De Santis et al., 1995; Brancolini et al., 1997), and is correlated with a large hiatus in DSDP 273 which is dated from 10.5 to 4 ma (Savage and Ciesielski, 1983). Horizon RSU2 corresponds to a sharp change in the structure and lithology of sediments, which may be interpreted as a major increase of the glacial influence. Thus, it is clear that RSU2 identifies a major, unique event in the depositional history at the Ross Sea. The explanation of this event is today largely hypothetical, based on progressive climatic cooling occurred during Pliocene and the consequent grow of the Antarctic ice sheet. For setting up reliable paleo-climatic models, however, we have to define precisely the extension and features of the ice sheet: thus, we proposed to carry out a detailed geophysical study in a specific area of the Ross Sea, for reconstructing dimensions and dynamics of the Eastern ice sheet during Pliocene, a period of large changes at a global level, anda also the most debated one for the history of the Antarctic ice sheet.

  • During the Antarctic summer 1988-89, a geophysical survey (seismic, gravity and magnetics) was carried out by the National Institute of Oceanography and Applied Geophysics - OGS of Trieste, Italy, in the Ross Sea with the Research Vessel O.G.S. Explora. 23 lines of total length 4113.1 Km were collected. The cruise began on December 10,1988 from the harbor of Hobart (Australia) and ended on January 15, 1989, with its arrival in Dunedin (New Zealand). Gravimetric and geomagnetic data were continuously acquired during the cruise, with minor interruptions due to adverse sea conditions. The multichannel seismic survey was run in the Ross Sea from December 18 to January 8. The project has been financially supported by the Italian Antarctic Program (PNRA).

  • During austral summer1996/97, the National Institute of Oceanography and Applied Geophysics - OGS, on board the research vessel OGS-Explora, conducted marine geological and geophysical surveys along the Antarctic Peninsula. During this cruise there were several research programmes; TENAP, BSR and SEDANO II. The TENAP (cenozoic Tectonic Evolutionof the Northem Antarctic Peninsula) programme was a geological and geophysical research project to study the Cenozoic tectonic evolution of the Antartic Peninsula and its borders; data were collected between longitude 59 and 66 degrees West, and latitude 61 and 64 degrees South. During this programme 702.5 km of 30-fold multichannel seismic reflection (MCS) data, 16 second records, 4 ms sample rate, were recorded on a SERCEL SN 358 DMX system. The source consisted of an airgun array with a total volume of 60.5 litres, using the Single Bubble methodology, fired every 50 meters into a 3000 m cable consisting of 120 hydrophone groups towed at an average depth of 12 m. A GPS + TRANSIT satellite receiver system was used for navigation. The Chief Scientists on this programme was: Giulio Pellis of the Dipartimento di Ingegneria Civile e Ambientale of the Università di Trieste, Piazzale Europa n. 1, 34127 Trieste, Italy. Processing of the data generally followed a conventional sequence: Reformat, Quality control, Amplitude recovery, Deconvolution, Velocity analysis, NMO corrections, Mute, Trace weighting, Stack, Mixing, Filter, Dynamic trace equalisation.

  • High-resolution multichannel seismic profiles have been collected in January–March 2017 by OGS on the continental rise off the Sabrina Coast (East Antarctica). The data were acquired as part of the Italian Program of Antarctic Research (PNRA) TYTAN “Totten Glacier dynamics and Southern Ocean circulation impact on depositional processes since the Mid- to Late Cenozoic” project (PI: F. Donda-OGS) during the Australian Marine National Facility survey IN2017-V01 on board the RV Investigator. TYTAN was embedded in to the Australian project "Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles” that aimed to understand the interaction of Totten Glacier and its ice drainage basin with the Southern Ocean during periods of warming and ice-sheet retreat in the Pleistocene and Holocene. In order to achieve these scientific objectives, three areas were identified for the geophysical and oceanographic survey: two on the continental slope and rise off Sabrina Coast and one on the continental shelf, which was not investigated because it remained covered by sea ice throughout the season. Expanded and well-preserved sedimentary successions imaged on the TYTAN seismic data highlight the potential of this region for deep ocean drilling, which will provide unprecedented history of the glaciers evolution in the Aurora Basin and their sensitivity to climate change under different background state conditions. In fact, TYTAN seismic data played a crucial role in the identification of potential drilling sites for the IODP 1002 Proposal “Totten Glacier Climate Vulnerability under varying Neogene climate conditions: Lessons for East Antarctic Ice Sheet climate sensitivity” (under review).

  • During austral summer1996/97, the National Institute of Oceanography and Applied Geophysics - OGS, on board the research vessel OGS-Explora, conducted marine geological and geophysical surveys along the Antarctic Peninsula. During this cruise there were several research programmes; TENAP, BSR and SEDANO II. The TENAP (cenozoic Tectonic Evolutionof the Northem Antarctic Peninsula) programme was a geological and geophysical research project to study the Cenozoic tectonic evolution of the Antartic Peninsula and its borders; data were collected between longitude 59 and 66 degrees West, and latitude 61 and 64 degrees South. During this programme 702.5 km of 30-fold multichannel seismic reflection (MCS) data, 16 second records, 4 ms sample rate, were recorded on a SERCEL SN 358 DMX system. The source consisted of an airgun array with a total volume of 60.5 litres, using the Single Bubble methodology, fired every 50 meters into a 3000 m cable consisting of 120 hydrophone groups towed at an average depth of 12 m. A GPS + TRANSIT satellite receiver system was used for navigation. The Chief Scientists on this programme was: Giulio Pellis of the Dipartimento di Ingegneria Civile e Ambientale of the Università di Trieste, Piazzale Europa n. 1, 34127 Trieste, Italy. Processing of the data generally followed a conventional sequence: Reformat, Quality control, Amplitude recovery, Deconvolution, Velocity analysis, NMO corrections, Mute, Trace weighting, Stack, Mixing, Filter, Dynamic trace equalisation.

  • High-resolution multichannel seismic profiles have been collected in January–March 2017 by OGS on the continental rise off the Sabrina Coast (East Antarctica). The data were acquired as part of the Italian Program of Antarctic Research (PNRA) TYTAN “Totten Glacier dynamics and Southern Ocean circulation impact on depositional processes since the Mid- to Late Cenozoic” project (PI: F. Donda-OGS) during the Australian Marine National Facility survey IN2017-V01 on board the RV Investigator. TYTAN was embedded in to the Australian project "Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles” that aimed to understand the interaction of Totten Glacier and its ice drainage basin with the Southern Ocean during periods of warming and ice-sheet retreat in the Pleistocene and Holocene. In order to achieve these scientific objectives, three areas were identified for the geophysical and oceanographic survey: two on the continental slope and rise off Sabrina Coast and one on the continental shelf, which was not investigated because it remained covered by sea ice throughout the season. Expanded and well-preserved sedimentary successions imaged on the TYTAN seismic data highlight the potential of this region for deep ocean drilling, which will provide unprecedented history of the glaciers evolution in the Aurora Basin and their sensitivity to climate change under different background state conditions. In fact, TYTAN seismic data played a crucial role in the identification of potential drilling sites for the IODP 1002 Proposal “Totten Glacier Climate Vulnerability under varying Neogene climate conditions: Lessons for East Antarctic Ice Sheet climate sensitivity” (under review).