From 1 - 10 / 40
  • Complementary with the ODYSSEA project funded by PNRA, ANTSSS aimed at finding evidence for Late Pleistocene sedimentary signatures of major changes in the extent of grounded, marine based ice sheets in the Ross Sea, as preserved in slope/ rise drift deposits by means of seismic and oceanographic data. During the 2017 expedition, OGS Explora collected over 450 km of Single Channel Seismics (SCS), 1575 km2 of bathymetry, >500 km of sub-bottom, and oceanographic data, including Conductivity Temperature Depth (CTD), Acoustic Doppler Current Profiler (ADCP), Lowered-ADCP, Expendable Bathythermograph (XBT) and turbidity data. Part of the seismic data have been initially published in Gales et al. (2021) Role of dense shelf water in the development of Antarctic submarine canyon morphology. Geomorphology, 372, art. no. 107453. DOI: 10.1016/j.geomorph.2020.107453

  • Complementary with the ODYSSEA project funded by PNRA, ANTSSS aimed at finding evidence for Late Pleistocene sedimentary signatures of major changes in the extent of grounded, marine based ice sheets in the Ross Sea, as preserved in slope/ rise drift deposits by means of seismic and oceanographic data. During the 2017 expedition, OGS Explora collected over 450 km of Single Channel Seismics (SCS), 1575 km2 of bathymetry, >500 km of sub-bottom, and oceanographic data, including Conductivity Temperature Depth (CTD), Acoustic Doppler Current Profiler (ADCP), Lowered-ADCP, Expendable Bathythermograph (XBT) and turbidity data. Part of the seismic data have been initially published in Gales et al. (2021) Role of dense shelf water in the development of Antarctic submarine canyon morphology. Geomorphology, 372, art. no. 107453. DOI: 10.1016/j.geomorph.2020.107453

  • Complementary with the ODYSSEA project funded by PNRA, ANTSSS aimed at finding evidence for Late Pleistocene sedimentary signatures of major changes in the extent of grounded, marine based ice sheets in the Ross Sea, as preserved in slope/ rise drift deposits by means of seismic and oceanographic data. During the 2017 expedition, OGS Explora collected over 450 km of Single Channel Seismics (SCS), 1575 km2 of bathymetry, >500 km of sub-bottom, and oceanographic data, including Conductivity Temperature Depth (CTD), Acoustic Doppler Current Profiler (ADCP), Lowered-ADCP, Expendable Bathythermograph (XBT) and turbidity data. Part of the seismic data have been initially published in Gales et al. (2021) Role of dense shelf water in the development of Antarctic submarine canyon morphology. Geomorphology, 372, art. no. 107453. DOI: 10.1016/j.geomorph.2020.107453

  • Complementary with the ODYSSEA project funded by PNRA, ANTSSS aimed at finding evidence for Late Pleistocene sedimentary signatures of major changes in the extent of grounded, marine based ice sheets in the Ross Sea, as preserved in slope/ rise drift deposits by means of seismic and oceanographic data. During the 2017 expedition, OGS Explora collected over 450 km of Single Channel Seismics (SCS), 1575 km2 of bathymetry, >500 km of sub-bottom, and oceanographic data, including Conductivity Temperature Depth (CTD), Acoustic Doppler Current Profiler (ADCP), Lowered-ADCP, Expendable Bathythermograph (XBT) and turbidity data. Part of the seismic data have been initially published in Gales et al. (2021) Role of dense shelf water in the development of Antarctic submarine canyon morphology. Geomorphology, 372, art. no. 107453. DOI: 10.1016/j.geomorph.2020.107453

  • Complementary with the ANTSSS project funded by EUROFLEETS, ODYSSEA aimed at investigating the sediment drifts to the west of the Hillary Canyon (Ross Sea continental margin) by means of seismic and oceanographic data to contribute to the understanding of past and present ocean dynamics and glacial history of this Antarctic sector. During the 32nd PNRA expedition, OGS Explora collected over 240 km of Single Channel Seismics (SCS), 2700 km2 of bathymetry, 500 km of sub-bottom, 6 gravity cores for a total of nearly 30 m of sediments, 4 box cores, 25 XBT launches, 2 rosette casts with water sampling, CTD, L-ADCP, turbidity and florescence probes. Part of the seismic data have been initially published in Conte R et al (2021) Bottom current control on sediment deposition between the Iselin Bank and the Hillary Canyon (Antarctica) since the late Miocene: An integrated seismic-oceanographic approach. Deep-Sea Research Part I: Oceanographic Research Papers 176, art. no. 103606, DOI: 10.1016/j.dsr.2021.103606

  • Complementary with the ODYSSEA project funded by PNRA, ANTSSS aimed at finding evidence for Late Pleistocene sedimentary signatures of major changes in the extent of grounded, marine based ice sheets in the Ross Sea, as preserved in slope/ rise drift deposits by means of seismic and oceanographic data. During the 2017 expedition, OGS Explora collected over 450 km of Single Channel Seismics (SCS), 1575 km2 of bathymetry, >500 km of sub-bottom, and oceanographic data, including Conductivity Temperature Depth (CTD), Acoustic Doppler Current Profiler (ADCP), Lowered-ADCP, Expendable Bathythermograph (XBT) and turbidity data. Part of the seismic data have been initially published in Gales et al. (2021) Role of dense shelf water in the development of Antarctic submarine canyon morphology. Geomorphology, 372, art. no. 107453. DOI: 10.1016/j.geomorph.2020.107453

  • Complementary with the ANTSSS project funded by EUROFLEETS, ODYSSEA aimed at investigating the sediment drifts to the west of the Hillary Canyon (Ross Sea continental margin) by means of seismic and oceanographic data to contribute to the understanding of past and present ocean dynamics and glacial history of this Antarctic sector. During the 32nd PNRA expedition, OGS Explora collected over 240 km of Single Channel Seismics (SCS), 2700 km2 of bathymetry, 500 km of sub-bottom, 6 gravity cores for a total of nearly 30 m of sediments, 4 box cores, 25 XBT launches, 2 rosette casts with water sampling, CTD, L-ADCP, turbidity and florescence probes. Part of the seismic data have been initially published in Conte R et al (2021) Bottom current control on sediment deposition between the Iselin Bank and the Hillary Canyon (Antarctica) since the late Miocene: An integrated seismic-oceanographic approach. Deep-Sea Research Part I: Oceanographic Research Papers 176, art. no. 103606, DOI: 10.1016/j.dsr.2021.103606

  • Complementary with the ODYSSEA project funded by PNRA, ANTSSS aimed at finding evidence for Late Pleistocene sedimentary signatures of major changes in the extent of grounded, marine based ice sheets in the Ross Sea, as preserved in slope/ rise drift deposits by means of seismic and oceanographic data. During the 2017 expedition, OGS Explora collected over 450 km of Single Channel Seismics (SCS), 1575 km2 of bathymetry, >500 km of sub-bottom, and oceanographic data, including Conductivity Temperature Depth (CTD), Acoustic Doppler Current Profiler (ADCP), Lowered-ADCP, Expendable Bathythermograph (XBT) and turbidity data. Part of the seismic data have been initially published in Gales et al. (2021) Role of dense shelf water in the development of Antarctic submarine canyon morphology. Geomorphology, 372, art. no. 107453. DOI: 10.1016/j.geomorph.2020.107453

  • Complementary with the ODYSSEA project funded by PNRA, ANTSSS aimed at finding evidence for Late Pleistocene sedimentary signatures of major changes in the extent of grounded, marine based ice sheets in the Ross Sea, as preserved in slope/ rise drift deposits by means of seismic and oceanographic data. During the 2017 expedition, OGS Explora collected over 450 km of Single Channel Seismics (SCS), 1575 km2 of bathymetry, >500 km of sub-bottom, and oceanographic data, including Conductivity Temperature Depth (CTD), Acoustic Doppler Current Profiler (ADCP), Lowered-ADCP, Expendable Bathythermograph (XBT) and turbidity data. Part of the seismic data have been initially published in Gales et al. (2021) Role of dense shelf water in the development of Antarctic submarine canyon morphology. Geomorphology, 372, art. no. 107453. DOI: 10.1016/j.geomorph.2020.107453

  • Complementary with the ANTSSS project funded by EUROFLEETS, ODYSSEA aimed at investigating the sediment drifts to the west of the Hillary Canyon (Ross Sea continental margin) by means of seismic and oceanographic data to contribute to the understanding of past and present ocean dynamics and glacial history of this Antarctic sector. During the 32nd PNRA expedition, OGS Explora collected over 240 km of Single Channel Seismics (SCS), 2700 km2 of bathymetry, 500 km of sub-bottom, 6 gravity cores for a total of nearly 30 m of sediments, 4 box cores, 25 XBT launches, 2 rosette casts with water sampling, CTD, L-ADCP, turbidity and florescence probes. Part of the seismic data have been initially published in Conte R et al (2021) Bottom current control on sediment deposition between the Iselin Bank and the Hillary Canyon (Antarctica) since the late Miocene: An integrated seismic-oceanographic approach. Deep-Sea Research Part I: Oceanographic Research Papers 176, art. no. 103606, DOI: 10.1016/j.dsr.2021.103606